berezin_measure ======================================== .. py:class:: grassmanntn.arith.berezin_measure(var_list, reverse=False) .. py:function:: grassmanntn.arith.d(var_list, reverse=False) An object representing a Berezin integral operator. **Parameters:** - **var_list:** `grassmann_number `__ or a list of `grassmann_number `__ The variable(s) to be integrated. - **reverse:** `True` or `False` (default) If False, the measure of each variables is ordered from left to right. If True, from right to left. If `var_list` is not a list, this option does not matter. **Returns:** - **out:** `berezin_measure `__ The associated integration measure. Attributes ++++++++++ Binary operations +++++++++++++++++++++++++++ - **Multiplication**: `*` and `*` If multiply to a `grassmann_number `__, returns an integration. If multiply to another `berezin_measure `__, returns a combined integration measure. Examples ++++++++ Consider the following Grassmann number. .. code-block:: python >>> import numpy as np >>> from grassmanntn import arith as arith >>> >>> ψ = arith.set_ac(["ψ1","ψ2"]) >>> φ = arith.set_ac(["φ1","φ2"]) >>> K = np.array( [[3,7],[2,5]] ) >>> W = arith.exp( - φ @ K @ ψ ) >>> W 1.0 + (-3.0)*φ1^ψ1 + (-2.0)*φ2^ψ1 + (-7.0)*φ1^ψ2 + (-5.0)*φ2^ψ2 + (-1.0)*φ1^φ2^ψ1^ψ2 We define the ψ-integral and the φ-integral. .. code-block:: python >>> # multivariable measure >>> dψ = arith.d(ψ) >>> dψ ∫ψ1 ∫ψ2 >>> dφ = arith.d(φ) >>> dφ ∫φ1 ∫φ2 We can apply the integral by multiplying the measure directly to the Grassmann number: .. code-block:: python >>> dψ*W (1.0)*φ1^φ2 >>> dφ*W (1.0)*ψ1^ψ2 The product is associative. .. code-block:: python >>> dψ*dφ*W -1.0 >>> dψ*(dφ*W) -1.0 >>> (dψ*dφ)*W -1.0